Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Plant Signaling & Be...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Plant Signaling & Behavior
Article . 2012 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Complex feedback regulations govern the expression of miRNA396 and its GRF target genes

Authors: Tarek Hewezi; Thomas J. Baum;

Complex feedback regulations govern the expression of miRNA396 and its GRF target genes

Abstract

The beet cyst nematode, Heterodera schachtii, is a sedentary root parasite that induces the formation of a specialized root feeding structure, the syncytium. We previously have shown that coordinated regulation of miR396 and its target genes GRF1 and GRF3 in the syncytium is required for proper formation. To gain a better understanding of this coordinated regulation, we used quantitative real-time PCR to assess the abundance of primary (pri)-miRNA396a, pri-miRNA396b and mature miRNA396 in transgenic Arabidopsis plants overexpressing either wild-type variants of the GRF1 or GRF3 coding sequences or miR396-resistant variants. We also included a grf1/grf2/grf3 triple mutant in these analyses. We observed significant decreases in the abundance of pri-miRNA396a, pri-miRNA396b and mature miR396 in the transgenic plants overexpressing GRF1 or GRF3, particularly with the miRNA396-resistant variants. In contrast, the primary transcripts and mature miRNA396 abundance were significantly increased in the grf1/grf2/grf3 triple knockout mutant. These results demonstrate that homeostasis between miR396 and the target genes GRF1 and GRF3 is established through reciprocal feedback regulation, in which GRF1/GRF3 and miR396 negatively regulate each other's expression. In addition, we found that constitutive expression of GRF1 or GRF3 decreases the mRNA abundance of other GRFs, even those that are not targeted by miR396, as well as their own endogenous transcripts, which documents further regulatory facets of this equilibrium.

Related Organizations
Keywords

Feedback, Physiological, MicroRNAs, Arabidopsis Proteins, Gene Expression Regulation, Plant, Arabidopsis, Genes, Plant, Plants, Genetically Modified

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    55
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
55
Top 10%
Top 10%
Top 10%
gold