
Abstract Cftr is directly involved in myeloid cell function, contributing to the pathophysiological phenotype of the CF lung. The absence or reduction of CFTR function causes CF and results in a pulmonary milieu characterized by bacterial colonization and unresolved inflammation. The ineffectiveness at controlling infection by species such as Pseudomonas aeruginosa suggests defects in innate immunity. Macrophages, neutrophils, and DCs have all been shown to express CFTR mRNA but at low levels, raising the question of whether CFTR has a functional role in these cells. Bone marrow transplants between CF and non-CF mice suggest that these cells are inherently different; we confirm this observation using conditional inactivation of Cftr in myeloid-derived cells. Mice lacking Cftr in myeloid cells overtly appear indistinguishable from non-CF mice until challenged with bacteria instilled into the lungs and airways, at which point, they display survival and inflammatory profiles intermediate in severity as compared with CF mice. These studies demonstrate that Cftr is involved directly in myeloid cell function and imply that these cells contribute to the pathophysiological phenotype of the CF lung.
Inflammation, Cystic Fibrosis, Cystic Fibrosis Transmembrane Conductance Regulator, Mice, Inbred C57BL, Disease Models, Animal, Mice, Animals, Myeloid Cells, Pseudomonas Infections, Respiratory Tract Infections
Inflammation, Cystic Fibrosis, Cystic Fibrosis Transmembrane Conductance Regulator, Mice, Inbred C57BL, Disease Models, Animal, Mice, Animals, Myeloid Cells, Pseudomonas Infections, Respiratory Tract Infections
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 128 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
