
The six-transmembrane protein GDE2 controls the onset and progression of spinal motor neuron differentiation through extracellular glycerophosphodiester phosphodiesterase metabolism. Although this process is likely to be tightly regulated, the relevant mechanisms that modulate its activity are unknown. Here we show that the antioxidant scavenger peroxiredoxin1 (Prdx1) interacts with GDE2, and that loss of Prdx1 causes motor neuron deficits analogous to GDE2 ablation. Prdx1 cooperates with GDE2 to drive motor neuron differentiation, and this synergy requires Prdx1 thiol-dependent catalysis. Prdx1 activates GDE2 through reduction of an intramolecular disulfide bond that bridges its intracellular N- and C-terminal domains. GDE2 variants incapable of disulfide bond formation acquire independence from Prdx1 and are potent inducers of motor neuron differentiation. These findings define Prdx1 as a pivotal regulator of GDE2 activity and suggest roles for coupled thiol-redox-dependent cascades in controlling neuronal differentiation in the spinal cord.
Motor Neurons, Biochemistry, Genetics and Molecular Biology(all), Phosphoric Diester Hydrolases, Cell Differentiation, Chick Embryo, Peroxiredoxins, MOLNEURO, Spine, Avian Proteins, Mice, SIGNALING, Animals, Sulfhydryl Compounds, Oxidation-Reduction
Motor Neurons, Biochemistry, Genetics and Molecular Biology(all), Phosphoric Diester Hydrolases, Cell Differentiation, Chick Embryo, Peroxiredoxins, MOLNEURO, Spine, Avian Proteins, Mice, SIGNALING, Animals, Sulfhydryl Compounds, Oxidation-Reduction
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 98 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
