
pmid: 9038167
The LIM domain protein rhombotin-2 (RBTN-2/TTG-2/LMO2) is involved in many processes, including leukemogenesis and erythropoiesis. It is thought that the principle role of RBTN-2 in these processes is to regulate transcription. To examine the potential for RBTN-2 to modulate transcription, we constructed RBTN-2/GAL4 DNA-binding domain fusion proteins and measured their ability to activate transcription of a reporter gene construct. From these studies we identified a transcription activation domain within the NH2 terminus of RBTN-2. This activation domain was further localized within a proline-rich 19-amino acid region. A second activation domain of 11 amino acids was also identified. This domain was located within the COOH terminus of RBTN-2, and functioned in mammalian cells but not in yeast. Furthermore, the two LIM domains of RBTN-2 were shown to function as transcription repression domains. Each individual LIM domain acted as an independent transcription repression domain on a heterologous activation domain. However, in context of full-length RBTN-2, the LIM domains selectively repressed the NH2-terminal activation domain, but had no effect on the COOH-terminal domain. Overall, these results demonstrate that the T-cell oncogene RBTN-2 is a complex transcription factor possessing multiple transcription regulatory modules, including two activation domains and two repression domains.
Binding Sites, Proline, T-Lymphocytes, DNA, Polymerase Chain Reaction, DNA-Binding Proteins, Genes, Reporter, Proto-Oncogene Proteins, COS Cells, Metalloproteins, Animals, Transcription Factors
Binding Sites, Proline, T-Lymphocytes, DNA, Polymerase Chain Reaction, DNA-Binding Proteins, Genes, Reporter, Proto-Oncogene Proteins, COS Cells, Metalloproteins, Animals, Transcription Factors
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
