
Graphical abstractDisplay Omitted HighlightsA new cooperative learning strategy is hybridized with DMS-PSO.Information can be exchanged among sub-swarms before the regrouping process.Experimental results show that DMS-PSO-CLS has a superior performance. In this article, the dynamic multi-swarm particle swarm optimizer (DMS-PSO) and a new cooperative learning strategy (CLS) are hybridized to obtain DMS-PSO-CLS. DMS-PSO is a recently developed multi-swarm optimization algorithm and has strong exploration ability for the use of a novel randomly regrouping schedule. However, the frequently regrouping operation of DMS-PSO results in the deficiency of the exploitation ability. In order to achieve a good balance between the exploration and exploitation abilities, the cooperative learning strategy is hybridized to DMS-PSO, which makes information be used more effectively to generate better quality solutions. In the proposed strategy, for each sub-swarm, each dimension of the two worst particles learns from the better particle of two randomly selected sub-swarms using tournament selection strategy, so that particles can have more excellent exemplars to learn and can find the global optimum more easily. Experiments are conducted on some well-known benchmarks and the results show that DMS-PSO-CLS has a superior performance in comparison with DMS-PSO and several other popular PSO variants.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 79 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
