
doi: 10.1002/bies.10046
pmid: 11835276
AbstractHeterochronic genes control the timing of developmental programs. In C. elegans, two key genes in the heterochronic pathway, lin‐4 and let‐7, encode small temporally expressed RNAs (stRNAs) that are not translated into protein. These stRNAs exert negative post‐transcriptional regulation by binding to complementary sequences in the 3′ untranslated regions of their target genes. stRNAs are transcribed as longer precursor RNAs that are processed by the RNase Dicer/DCR‐1 and members of the RDE‐1/AGO1 family of proteins, which are better known for their roles in RNA interference (RNAi). However, stRNA function appears unrelated to RNAi. Both sequence and temporal regulation of let‐7 stRNA is conserved in other animal species suggesting that this is an evolutionarily ancient gene. Indeed, C. elegans, Drosophila and humans encode at least 86 other RNAs with similar structural features to lin‐4 and let‐7. We postulate that other small non‐coding RNAs may function as stRNAs to control temporal identity during development in C. elegans and other organisms. BioEssays 24:119–129, 2002. © 2002 Wiley Periodicals, Inc.
Ribonuclease III, Base Sequence, Molecular Sequence Data, Gene Expression Regulation, Developmental, Helminth Proteins, Repressor Proteins, MicroRNAs, RNA, Small Nuclear, Endoribonucleases, Animals, Humans, Nucleic Acid Conformation, Cell Lineage, Gene Silencing, Caenorhabditis elegans, Caenorhabditis elegans Proteins, 3' Untranslated Regions
Ribonuclease III, Base Sequence, Molecular Sequence Data, Gene Expression Regulation, Developmental, Helminth Proteins, Repressor Proteins, MicroRNAs, RNA, Small Nuclear, Endoribonucleases, Animals, Humans, Nucleic Acid Conformation, Cell Lineage, Gene Silencing, Caenorhabditis elegans, Caenorhabditis elegans Proteins, 3' Untranslated Regions
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 146 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
