
Breakthroughs in artificial intelligence (AI) hold enormous potential as it can automate complex tasks and go even beyond human performance. In their study, McKinney et al. showed the high potential of AI for breast cancer screening. However, the lack of methods’ details and algorithm code undermines its scientific value. Here, we identify obstacles hindering transparent and reproducible AI research as faced by McKinney et al., and provide solutions to these obstacles with implications for the broader field.
AI, Artificial Intelligence, 500, Reproducibility of Results, Research Subject Categories::MEDICINE::Physiology and pharmacology::Physiology::Medical technology, Algorithms, 620
AI, Artificial Intelligence, 500, Reproducibility of Results, Research Subject Categories::MEDICINE::Physiology and pharmacology::Physiology::Medical technology, Algorithms, 620
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 373 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
