
K-means is a clustering algorithm that aims to group data into k similar clusters. The objective of the 2016 MEMOCODE Design Contest is to implement a system to efficiently partition a large set of multidimensional data using k-means. Contestants were given one month to develop a system to perform this operation, aiming to maximize performance or cost-adjusted performance. Teams were encouraged to consider a variety of computational targets including CPUs, FPGAs, and GPGPUs. The winning team, which was invited to contribute a paper describing their techniques, combined careful algorithmic and implementation optimizations using CPUs and GPUs.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
