Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Microbiolo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Microbiology
Article . 2009 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Aureobasidin A arrests growth of yeast cells through both ceramide intoxication and deprivation of essential inositolphosphorylceramides

Authors: Cerantola, Vanessa; Guillas, Isabelle; Roubaty, Carole; Vionnet, Christine; Uldry, Danièle; Knudsen, Jens; Conzelmann, Andreas;

Aureobasidin A arrests growth of yeast cells through both ceramide intoxication and deprivation of essential inositolphosphorylceramides

Abstract

SummaryAll mature Saccharomyces cerevisiae sphingolipids comprise inositolphosphorylceramides containing C26:0 or C24:0 fatty acids and either phytosphingosine or dihydrosphingosine. Here we analysed the lipid profile of lag1Δlac1Δ mutants lacking acyl‐CoA‐dependent ceramide synthesis, which require the reverse ceramidase activity of overexpressed Ydc1p for sphingolipid biosynthesis and viability. These cells, termed 2Δ.YDC1, make sphingolipids containing exclusively dihydrosphingosine and an abnormally wide spectrum of fatty acids with between 18 and 26 carbon atoms. Like wild‐type cells, 2Δ.YDC1 cells stop growing when exposed to Aureobasidin A (AbA), an inhibitor of the inositolphosphorylceramide synthase AUR1, yet their ceramide levels remain very low. This finding argues against a current hypothesis saying that yeast cells do not require inositolphosphorylceramides and die in the presence of AbA only because ceramides build up to toxic concentrations. Moreover, W303lag1Δlac1Δypc1Δydc1Δ cells, reported to be AbA resistant, stop growing on AbA after a certain number of cell divisions, most likely because AbA blocks the biosynthesis of anomalous inositolphosphorylsphingosides. Thus, data argue that inositolphosphorylceramides of yeast, the equivalent of mammalian sphingomyelins, are essential for growth. Data also clearly confirm that wild‐type strains, when exposed to AbA, immediately stop growing because of ceramide intoxication, long before inositolphosphorylceramide levels become subcritical.

Keywords

Antifungal Agents, Depsipeptides, Saccharomyces cerevisiae, Enzyme Inhibitors, Ceramides, Glycosphingolipids

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    68
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
68
Top 10%
Top 10%
Top 10%
Green
bronze