
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>The definitive diagnosis of histology specimen images is largely based on the radiologist’s comprehensive experience; however, due to the fine to the coarse visual appearance of such images, experts often disagree with their assessments. Sophisticated deep learning approaches can help to automate the diagnosis process of the images and reduce the analysis duration. More efficient and accurate automated systems can also increase the diagnostic impartiality by reducing the difference between the operators. We propose a FabNet model that can learn the fine-to-coarse structural and textural features of multi-scale histopathological images by using accretive network architecture that agglomerate hierarchical feature maps to acquire significant classification accuracy. We expand on a contemporary design by incorporating deep and close integration to finely combine features across layers. Our deep layer accretive model structure combines the feature hierarchy in an iterative and hierarchically manner that infers higher accuracy and fewer parameters. The FabNet can identify malignant tumors from images and patches from histopathology images. We assessed the efficiency of our suggested model standard cancer datasets, which included breast cancer as well as colon cancer histopathology images. Our proposed avant garde model significantly outperforms existing state-of-the-art models in respect of the accuracy, F1 score, precision, and sensitivity, with fewer parameters.
computer-assisted diagnosis, breast cancer, colon cancer, pattern recognition, convolutional neural networks, deep learning, artificial intelligence, histopathological images, Article
computer-assisted diagnosis, breast cancer, colon cancer, pattern recognition, convolutional neural networks, deep learning, artificial intelligence, histopathological images, Article
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
