<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Multiple steps in mRNA processing and transcription are coupled. Notably, the processing of mRNA 3′ ends is linked to transcription termination by RNA polymerase II. Previously, we found that the yeast hnRNP protein Npl3 can negatively regulate 3′ end mRNA formation and termination at the GAL1 gene. Here we show that overexpression of the Hrp1 or Rna14 subunits of the CF IA polyadenylation factor increases recognition of a weakened polyadenylation site. Genetic interactions of mutant alleles of NPL3 or HRP1 with RNA15 also indicate antagonism between these factors. Npl3 competes with Rna15 for binding to a polyadenylation precursor and inhibits cleavage and polyadenylation in vitro. These results suggest that an important function of hnRNP proteins is to ensure the fidelity of mRNA processing. Our results support a model in which balanced competition of Npl3 with mRNA processing factors may promote recognition of proper polyadenylation sites while suppressing cryptic sites.
mRNA Cleavage and Polyadenylation Factors, Saccharomyces cerevisiae Proteins, Nuclear Proteins, RNA-Binding Proteins, RNA, Messenger, Saccharomyces cerevisiae, Polyadenylation
mRNA Cleavage and Polyadenylation Factors, Saccharomyces cerevisiae Proteins, Nuclear Proteins, RNA-Binding Proteins, RNA, Messenger, Saccharomyces cerevisiae, Polyadenylation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 50 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |