Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nucleic Acid Therape...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Study of CRTC2 Pharmacology Using Antisense Oligonuceotides

Authors: Robert, Dullea; Christopher, Salatto; Simone, Sciabola; Tracy, Chen; Debra, Dimattia; Harmeet, Gandhok; John, Kreeger; +4 Authors

Study of CRTC2 Pharmacology Using Antisense Oligonuceotides

Abstract

The cAMP response element binding protein (CREB)-regulated transcriptional coactivator 2 (CRTC2) is a key component of the transcription complex regulating glucagon driven hepatic glucose production and previous evidence suggests that “inhibition” of CRTC2 improves glucose homeostasis in multiple rodent models of type 2 diabetes. Here we describe a process of identifying potential therapeutic antisense oligonucleotides (ASOs) directed against CRTC2. These ASOs were designed as locked nucleic acid (LNA) gapmers and a panel of approximately 400 sequences were first screened in vitro within both human and mouse liver cell lines. A group of active and selective compounds were then profiled in acute studies in mice to determine the level of CRTC2 mRNA reduction in liver as well as to obtain a preliminary indication of safety and tolerability. The compounds with the best activity and safety profiles were then evaluated in subchronic efficacy studies using the diet induced obese (DIO) mouse model of type 2 diabetes and primary human hepatocytes. Efficacy findings broadly confirmed the beneficial effect of reducing CRTC2 mRNA levels towards improving glucose control and other markers of metabolic function. Additionally, for the first time, translation to human cells has been established with demonstration of a reduction in glucagon-mediated glucose production in primary human hepatocytes and a potential clinical biomarker source identified to assess modulation of CRTC2 mRNA following ASO treatment. While the compounds identified herein did not demonstrate a therapeutic index sufficient for further development, this study should facilitate more efficient prosecution of compounds within an in vivo setting.

Related Organizations
Keywords

Blood Glucose, Primary Cell Culture, Oligonucleotides, Oligonucleotides, Antisense, Diet, High-Fat, Glucagon, Dietary Fats, High-Throughput Screening Assays, Mice, Diabetes Mellitus, Type 2, Gene Expression Regulation, Liver, Mice, Inbred NOD, Hepatocytes, Animals, RNA, Messenger, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!