Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On Building Robustness into Compilation-Based Main-Memory Database Query Engines

Authors: Prashanth Menon;

On Building Robustness into Compilation-Based Main-Memory Database Query Engines

Abstract

Relational database management systems (DBMS) are the bedrock upon which modern data processing intensive applications are assembled. Critical to ensuring low-latency queries is the efficiency of the DBMSs query processor. Just-in-time (JIT) query compilation is a popular techniqueto improve analytical query processing performance. However, a compiled query cannot overcome poor choices made by the DBMSs optimizer. A lousy query plan results in lousy query code. Poor query plans often arise and for many reasons. Although there is a large body of work exploring how a query processor can adapt itself at runtime to compensate for inadequate plans, these techniques do not work in DBMSs that rely on compiling queries. This dissertation presents multiple effective, practical, and complementary techniques to build adaptive query processing into compilation-based engines with negligible overhead. First, we propose a method that intelligently blends two otherwise disparate query processing approaches (compilation and vectorization) into one engine. This necessary first step allows operators to optimizethemselves using a combination of software memory prefetching and single instruction, multiple data (SIMD) vectorization resulting in improved performance. Next, we present a framework that builds upon our previous work to allow the DBMS to modify compiled queries without recompiling the plan or generating code speculatively. This technique enables more extensive groups of operators in a query to coordinate their optimization process. Finally, we present a method that decomposes query plans into fragments that can be compiled and executed independently. This not only reduces compilation overhead but enables the DBMS to learn properties about data processed in an earlier phase of the query to hyper-optimize the code it generates for later phases. Collectively, the techniques proposed in this dissertation enable any compilation-based DBMS to achieve dynamic runtime robustness without succumbing to any of its overheads.

Keywords

Applied Computer Science

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!