Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioorganic & Medicin...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioorganic & Medicinal Chemistry Letters
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

7TM X-ray structures for class C GPCRs as new drug-discovery tools. 1. mGluR5

Authors: Sid, Topiol; Michael, Sabio;

7TM X-ray structures for class C GPCRs as new drug-discovery tools. 1. mGluR5

Abstract

We illustrate, with a focus on mGluR5, how the recently published, first X-ray structures of mGluR 7TM domains, specifically those of mGluR1 and mGluR5 complexed with negative allosteric modulators (NAMs), will begin to influence ligand- (e.g., drug- or sweetener-) discovery efforts involving class C GPCRs. With an extensive docking study allowing full ligand flexibility and full side chain flexibility of all residues in the ligand-binding cavity, we have predicted and analyzed the binding modes of a variety of structurally diverse mGluR5 NAM ligands, showing how the X-ray structures serve to effectively rationalize each ligand's binding characteristics. We demonstrated that the features that are inherent in our earlier overlay model are preserved in the protein structure-based docking models. We identified structurally diverse compounds, which potentially act as mGluR NAMs, and revealed binding-site differences by performing high-throughput docking using a database of approximately six million structures of commercially available compounds and the mGluR1 and mGluR5 X-ray structures. By comparing the 7TM domains of the mGluR5 and mGluR1 X-rays structures, we identified selectivity factors within group I of the mGluRs. Similarly, using homology models that we built for mGluR2 and mGluR4, we have identified the factors leading to the selectivity between group I and groups II and III for ligands occupying the deepest portion of the mGluR5 binding cavity. Finally, we have proposed a structure-based explanation of the pharmacological switching within a set of positive allosteric modulators (PAMs) and their corresponding, very close NAM analogs.

Related Organizations
Keywords

Models, Molecular, Binding Sites, Indoles, Molecular Structure, Pyridines, Triazines, Receptor, Metabotropic Glutamate 5, Triazoles, Crystallography, X-Ray, Ligands, Molecular Docking Simulation, Thiazoles, Pyrimidines, Protein Domains, Benzamides, Drug Discovery, Pyrazoles

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!