Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ InTecharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
InTech
Part of book or chapter of book . 2012
Data sources: InTech
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.intechopen.com/cit...
Part of book or chapter of book
License: CC BY
Data sources: UnpayWall
https://doi.org/10.5772/36090...
Part of book or chapter of book . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MethylMeter(r): A Quantitative, Sensitive, and Bisulfite-Free Method for Analysis of DNA Methylation

Authors: McCarthy, David R.; Cotter, Philip D.; Hanna, Michelle M.;

MethylMeter(r): A Quantitative, Sensitive, and Bisulfite-Free Method for Analysis of DNA Methylation

Abstract

In this chapter we present a new bisulfite-free method to detect and quantify DNA methylation and its application to the detection of imprinting disorders such as Prader-Willi (PWS) and Angelman (AS) syndromes. The method, called MethylMeter®, combines affinity separation of methylated and unmethylated DNA with CAPTM (Coupled Abscription®PCR), a new quantitative and sensitive signal generation process. In order to validate MethylMeter®, we analyzed samples from 54 patients diagnosed with Prader-Willi or Angelman syndromes, as well as samples from normal patients. Results were compared to the results obtained previously on these samples using bisulfite-based TaqMan® Methylation-Specific PCR (MS-PCR). Methylation detection with CAP was as accurate as with TaqMan, but was approximately 2000 times more sensitive. Methylated DNA was separated from unmethylated DNA with the use of magnetic beads bearing a new methylCpG binding domain protein. The amount of the normally imprinted SNRPN promoter region present in the bound and unbound fractions was used to determine the relative amounts of methylated and unmethylated SNRPN promoter in the sample. The results were 100% concordant with previous results generated with MS-PCR, but significantly less patient DNA and time were required to obtain results, which are more quantitative than MS-PCR. CAP based detection can be accomplished without fluorescent probes and in fewer cycles than with other PCR methods. Because methylated DNA is detected based on purification of methylated DNA, rather than on chemical conversion of unmethylated DNA, the disadvantages of bisulfite treatment are avoided. DNA is not degraded allowing analysis of samples as small as 1 ng. CAP primer development is not limited by the effects of reduced sequence complexity or a requirement to overlap primers with CpG sites in the target DNA.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
hybrid