
pmid: 17155212
Several numerical algorithms for dynamic Monte Carlo simulations of surface chemistry have been proposed in the past. The variable step size method (VSSM) is commonly used for systems where the rate coefficients are constant in time, owing to its good efficiency. If rate coefficients vary in time, the first reaction method (FRM) has been shown to be more efficient. However, the cost of this algorithm to execute a reaction step depends on the considered lattice size, which can make this method inefficient for systems involving surface phenomena on different scales. Here we propose a general and efficient algorithm, the fast first reaction method (fFRM), which has the advantages of being applicable to systems with constant and time-varying rate coefficients, and of having a computational cost per reaction step that is independent of the lattice size. An additional feature of fFRM is that it is rejection-free, which means that once a reaction class is selected, a reaction of that type will be executed. A rejection-free variant of VSSM, called rVSSM, is also presented, which leads to an approximately 15% speedup compared with the VSSM algorithm for the considered example.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
