
doi: 10.3233/jifs-169491
handle: 10045/87149
This paper proposes an end-to-end Natural Language Generation approach to automatically create fiction stories using statistical language models. The proposed approach integrates the stages of macroplanning and the surface realisation, necessary to determine the content to write about together with the structure of the story, and the syntactic and lexical realisation of sentences to be generated, respectively. Moreover, the use of language models within the stages allows the generation task to be more flexible, as far as the adaptation of the approach to different languages, domains and textual genres is concerned. In order to validate our approach, two evaluations were performed. On the one hand, the influence of integrating position-specific language modelling in the macroplanning stage into the surface realisation module was evaluated. On the other hand, a user evaluation was performed to analyse the generated stories in a qualitative manner. Although there is still room for improvement, the results obtained from the first evaluation in conjunction with the user evaluation feedback shows that the combination of the aforementioned stages in an end-to-end approach is appropriate and have positive effects in the resulting generated text.
Document planning, Language modelling, Surface realisation, Lenguajes y Sistemas Informáticos, Automatic story generation, Natural language generation
Document planning, Language modelling, Surface realisation, Lenguajes y Sistemas Informáticos, Automatic story generation, Natural language generation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
