Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Caspase-9 activation and Apaf-1 cleavage by MMP-3

Authors: Eun-Mee, Kim; Eun-Jung, Shin; Ji Ae, Lee; Hyo Jin, Son; Dong Hee, Choi; Ji Man, Han; Onyou, Hwang;

Caspase-9 activation and Apaf-1 cleavage by MMP-3

Abstract

We have previously demonstrated that matrix metalloprotease-3 (MMP-3) can act inside the cell to trigger apoptosis in response to various cell stresses in dopaminergic neuronal cells. However, the mechanism by which MMP-3 activity leads to caspase-3 activation in apoptotic signaling was not known. In the present study, we found that MMP-3 acts upstream of caspase-9. Overexpression of wild type MMP-3, but not mutant MMP-3, generated the enzymatically active 35kD caspase-9. The caspase-9 activation was absent in MMP-3 knockout cells, but was present when these cells were transfected with wild type MMP-3 cDNA. It was elevated in cells that were under a MMP-3-inducing ER stress condition, and this was attenuated by pharmacologic inhibition and gene knockdown of MMP-3. Incubation of recombinant catalytic domain of MMP-3 (cMMP-3) with procaspase-9 was not sufficient to cause caspase-9 activation, and an additional cytosolic factor was required. cMMP-3 was found to bind to the cytosolic protein Apaf-1, as determined by changes in surface plasmon resonance, and to cleave Apaf-1. Pharmacological inhibition, knockout, and knockdown of MMP-3 attenuated the cleavage. Taken together, the present study demonstrates that MMP-3 leads to caspase-9 activation and suggests that this occurs indirectly via a cytosolic protein, possibly involving Apaf-1.

Related Organizations
Keywords

Mice, Knockout, Apoptosis, Surface Plasmon Resonance, Endoplasmic Reticulum, Caspase 9, Enzyme Activation, Mice, Inbred C57BL, Mice, Apoptotic Protease-Activating Factor 1, Stress, Physiological, Proteolysis, Animals, Matrix Metalloproteinase 3, Protein Binding, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!