Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oncogenearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncogene
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oncogene
Article . 2002 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Oncogene
Article . 2002
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

AML1 stimulates G1 to S progression via its transactivation domain

Authors: Alan D. Friedman; Florence Bernardin;

AML1 stimulates G1 to S progression via its transactivation domain

Abstract

Inhibition of AML1-mediated transactivation potently slows G1 to S cell cycle progression. In Ba/F3 cells, activation of exogenous AML1 (RUNX1)-ER with 4-hydroxytamoxifen prevents inhibition of G1 progression mediated by CBFbeta-SMMHC, a CBF oncoprotein. We expressed three AML1-ER variants with CBFbeta-SMMHC in Ba/F3 cells. In these lines, CBFbeta-SMMHC expression is regulated by the zinc-responsive metallothionein promoter. Deletion of 72 AML1 C-terminal residues, which includes a transrepression domain, did not alter the activity of AML1-ER, whereas further deletion of 98 residues, removing the most potent AML1 transactivation domain (TAD), prevented rescue of cell cycle inhibition. Notably, the two variants which did not stimulate G1 exacerbated CBFbeta-SMMHC-mediated cell cycle arrest, suggesting that they dominantly inhibit AML1 activities. In addition, the two variants which stimulated G1 also induced apoptosis in 5-15% of the cells, an effect consistent with excessive G1 stimulation. These observations indicate that AML1 activates transcription of one or more genes critical for the G1 to S transition via its C-terminal transactivation domain. Inactivation of AML in acute leukemia is expected to slow proliferation unless additional genetic alterations co-exist which accelerate G1.

Related Organizations
Keywords

Cell Nucleus, Binding Sites, DNA, Complementary, Recombinant Fusion Proteins, Active Transport, Cell Nucleus, G1 Phase, DNA, Hematopoietic Stem Cells, Cell Line, Protein Structure, Tertiary, S Phase, DNA-Binding Proteins, Mice, CCAAT-Binding Factor, Gene Expression Regulation, Proto-Oncogene Proteins, Core Binding Factor Alpha 2 Subunit, Animals, Humans, Sequence Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Average
Top 10%
Top 10%
bronze
Related to Research communities
Cancer Research