Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Astrobiologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Astrobiology
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Astrobiology
Article . 2020 . Peer-reviewed
License: Mary Ann Liebert TDM
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2017
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
Astrobiology
Article . 2021
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Obliquity Evolution of the Potentially Habitable Exoplanet Kepler-62f

Authors: Quarles, Billy; Barnes, Jason W.; Lissauer, Jack J.; Chambers, John;

Obliquity Evolution of the Potentially Habitable Exoplanet Kepler-62f

Abstract

Variations in the axial tilt, or obliquity, of terrestrial planets can affect their climates and therefore their habitability. Kepler-62f is a 1.4 R$_\oplus$ planet orbiting within the habitable zone of its K2 dwarf host star (Borucki et al. 2013). We perform N-body simulations that monitor the evolution of obliquity of Kepler-62f for 10 million year timescales to explore the effects on model assumptions, such as the masses of the Kepler-62 planets and the possibility of outer bodies. Significant obliquity variation occurs when the rotational precession frequency overlaps with one or more of the secular orbital frequencies, but most variations are limited to $\lesssim$10$^\circ$. Moderate variations ($\sim$10$^\circ - 20^\circ$) can occur over a broader range of initial obliquities when the relative nodal longitude ($����$) overlaps with the frequency and phase of a given secular mode. However, we find that adding outer gas giants on long period orbits ($\gtrsim$ 1000 days) can produce large ($\sim$60$^\circ$) variations in obliquity if Kepler-62f has a very rapid (4 hr) rotation period. The possibility of giant planets on long period orbits impacts the climate and habitability of Kepler-62f through variations in the latitudinal surface flux, where the timescale for large variation can occur on million year timescales.

15 pages, 17 figures, 5 tables; Revised relative to Referee Reports. Submitted to Astrobiology

Keywords

Earth and Planetary Astrophysics (astro-ph.EP), Extraterrestrial Environment, Rotation, Earth, Planet, Exobiology, Planets, FOS: Physical sciences, Computer Simulation, Astrophysics - Earth and Planetary Astrophysics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
Green
bronze