
pmid: 7023479
Abstract Several semisynthetic analogues of human insulin were prepared by enzyme-assisted coupling of synthetic octapeptides to the C-terminal of porcine desoctapeptide insulin. We report the receptor-binding and biological properties of [LeuB24]- and [LeuB25]-insulins, one of which has the same sequence as a “mutant” insulin recently found in a diabetic patient (Tager, H. et al.(1979) Nature 28 :121–125). [LeuB24]- and [LeuB25]-insulins had, respectively, 8–12% and 0.9–1.1% of the binding affinity of human insulin, and 11% and 2.7% of its potency in stimulating lipogenesis in isolated rat fat cells. Neither one was an antagonist of the biological effects of native insulin. While the ability of [LeuB24]-insulin to induce negative cooperativity was clearly impaired, that of [LeuB25]-insulin was almost abolished. [LeuB25]-insulin was also a potent antagonist of the negative cooperativity induced by native insulin.
Kinetics, Structure-Activity Relationship, Humans, Insulin, Amino Acid Sequence, Binding, Competitive, Receptor, Insulin, Cell Line
Kinetics, Structure-Activity Relationship, Humans, Insulin, Amino Acid Sequence, Binding, Competitive, Receptor, Insulin, Cell Line
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 48 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
