
pmid: 16631601
M-LP (Mpv17-like protein) is a protein that was initially identified in mouse tissues and shows high sequence homology with Mpv17 protein, a peroxisomal membrane protein involved in the development of early-onset glomerulosclerosis [R. Iida, T. Yasuda, E. Tsubota, H. Takatsuka, M. Masuyama, T. Matsuki, K. Kishi, M-LP, Mpv17-like protein, has a peroxisomal membrane targeting signal comprising a transmembrane domain and a positively charged loop and up-regulates expression of the manganese superoxide dismutase gene, J. Biol. Chem. 278 (2003) 6301-6306]. Here we report the identification and characterization of a human homolog of the M-LP (M-LPH) gene. The M-LPH gene is composed of four exons, extends over 14kb on chromosome 16p13.1, and is expressed as two alternatively spliced variants comprising four and three exons, respectively, which include open-reading frames encoding two distinct isoforms composed of 196 (M-LPH1) and 147 (M-LPH2) amino acids, respectively. These two variants were expressed ubiquitously in human tissues, however only M-LPH1 was detected at the protein level. Dual-color confocal analysis of COS-7 cells transfected with a green fluorescent protein-tagged M-LPH1 demonstrated that M-LPH1 is localized in peroxisomes. In order to elucidate the function of M-LPH1, we examined the mRNA levels of several enzymes involved in the metabolism of reactive oxygen species in COS-7 cells and found that transfection with M-LPH1 down-regulates expression of the plasma glutathione peroxidase and catalase genes. These results show the existence of the human homolog of M-LP and its participation in reactive oxygen species metabolism.
Sequence Homology, Amino Acid, Membrane Proteins, Antioxidants, Gene Expression Regulation, Enzymologic, Enzymes, Mice, COS Cells, Chlorocebus aethiops, Peroxisomes, Animals, Humans, Reactive Oxygen Species, Cells, Cultured
Sequence Homology, Amino Acid, Membrane Proteins, Antioxidants, Gene Expression Regulation, Enzymologic, Enzymes, Mice, COS Cells, Chlorocebus aethiops, Peroxisomes, Animals, Humans, Reactive Oxygen Species, Cells, Cultured
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 37 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
