Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BioMed Research Inte...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BioMed Research International
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Formulation, Optimization, In Vitro and In Vivo Evaluation of Saxagliptin‐Loaded Lipospheres for an Improved Pharmacokinetic Behavior

Authors: Akhtar Rasul; Safirah Maheen; Hafeez Ullah Khan; Maria Rasool; Shahid Shah; Ghulam Abbas; Khurram Afzal; +3 Authors

Formulation, Optimization, In Vitro and In Vivo Evaluation of Saxagliptin‐Loaded Lipospheres for an Improved Pharmacokinetic Behavior

Abstract

The development and optimization of controlled release lipospheres (LS) from safe biocompatible behenic acid (BA) was performed for not only enhancing patient’s compliance against highly prevailed chronic diabetes but also to vanquish the insufficiencies of traditional methods of drug delivery. The Box‐Bhenken design (BBD) was utilized to statistically investigate the impact of formulation variables on percentage yield (Y1), entrapment efficiency (Y2), and SG‐release (Y3) from saxagliptin‐ (SG‐) loaded LS, and the chosen optimized LS were subjected to a comparative in vivo pharmacokinetic analysis against commercially available SG brand. The compatibility analysis performed by DSC and FTIR established a complete lack of interaction of formulation components with SG, while p‐XRD suggested a mild transformation of crystalline drug to its amorphous form during encapsulation process. The spherical, free flowing smooth surface LS having zeta potential of ‐32 mV and size range of 11‐20 μm were conveniently formulated. The obtained data for Y1 (30‐80%), Y2 (30‐70%), and Y3 (40‐90%) showed a best fit with quadratic model. The pharmacokinetics analysis of LS showed a significantly decreased Cmax of SG (75.63 ± 3.85) with a sufficiently elevated Tmax (10.53 h) as compared to commercial brand of SG (99.66 ± 2.97 ng/mL and 3.55 ± 2.18 h). The achievement of greater bioavailability of SG was most probably attributed to higher level of half‐life, mean residence time (MRT), and AUC0-24 for SG released from LS. Conclusively, the novel approach of SG‐loaded LS had successfully sustained the plasma SG level for a prolonged time without increasing Cmax which would ultimately bring an effective management of chronic diabetes.

Country
Russian Federation
Keywords

Adult, Male, Models, Statistical, Drug Compounding, Fatty Acids, 610, Administration, Oral, Biological Availability, Adamantane, Dipeptides, Healthy Volunteers, Drug Liberation, Drug Delivery Systems, Solubility, 615, Delayed-Action Preparations, Liposomes, Humans, Research Article, Half-Life

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Green
gold