Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the VLDB Endowment
Article . 2012 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2012
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

ALAE

accelerating local alignment with affine gap exactly in biosequence databases
Authors: Yang, Xiaochun; Liu, Honglei; Wang, Bin;
Abstract

We study the problem of local alignment, which is finding pairs of similar subsequences with gaps. The problem exists in biosequence databases. BLAST is a typical software for finding local alignment based on heuristic, but could miss results. Using the Smith-Waterman algorithm, we can find all local alignments in O( mn ) time, where m and n are lengths of a query and a text, respectively. A recent exact approach BWT-SW improves the complexity of the Smith-Waterman algorithm under constraints, but still much slower than BLAST. This paper takes on the challenge of designing an accurate and efficient algorithm for evaluating local-alignment searches, especially for long queries. In this paper, we propose an efficient software called ALAE to speed up BWT-SW using a compressed suffix array. ALAE utilizes a family of filtering techniques to prune meaningless calculations and an algorithm for reusing score calculations. We also give a mathematical analysis and show that the upper bound of the total number of calculated entries using ALAE could vary from 4.50 mn 0.520 to 9.05 mn 0.896 for random DNA sequences and vary from 8.28 mn 0.364 to 7.49 mn 0.723 for random protein sequences. We demonstrate the significant performance improvement of ALAE on BWT-SW using a thorough experimental study on real biosequences. ALAE guarantees correctness and accelerates BLAST for most of parameters.

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Databases, Databases (cs.DB)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
Green