<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1093/jxb/ery057
pmid: 29462426
Brassinosteroids (BRs) are plant-specific steroidal hormones; BR homeostasis is crucial for various aspects of plant growth and development. However, to date, the BR inactivation process has not been thoroughly elucidated. In this study, we identified and characterized a novel BAHD family acyltransferase gene, BRASSINOSTEROID INACTIVATOR2 (BIA2), involved in BR inactivation. BIA2-overexpressing (OE-BIA2) plants displayed typical BR-deficient phenotypes, which were rescued by exogenous BR treatment. Real-time qRT-PCR and transcriptome analyses showed that expression levels of virtually all of the BR biosynthetic genes were increased, whereas the expression of many BR inactivation genes was reduced in OE-BIA2 plants. Root inhibition assays showed that the root growth of OE-BIA2 plants was inhibited. We obtained plants with an intermediate phenotype by crossing the OE-BIA2 plants with BRASSINOSTEROID-INSENSITIVE1 (BRI1)-overexpressing plants. The null BIA2 mutants had longer hypocotyls in the dark. BIA2 was predominantly expressed in roots, and its expression was induced by 24-epibrassinolide or dark treatment, but it exhibited a differential expression pattern compared with its homologue, BIA1. Furthermore, genetic transformation with point-mutant and deleted-BIA2 constructs confirmed that the HXXXD motif is essential for the function of BIA2. Taken together, these findings indicate that BIA2 is a typical BAHD acyltransferase that is involved in BR homeostasis and may inactivate bioactive BRs by esterification, particularly in roots and hypocotyls under dark conditions.
Arabidopsis Proteins, Gene Expression Regulation, Plant, Amino Acid Motifs, Brassinosteroids, Arabidopsis, Protein Kinases, Acyltransferases
Arabidopsis Proteins, Gene Expression Regulation, Plant, Amino Acid Motifs, Brassinosteroids, Arabidopsis, Protein Kinases, Acyltransferases
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 22 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |