Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Experimen...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Experimental Botany
Article . 2018 . Peer-reviewed
License: OUP Terms of Use and Content Access Policy
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Arabidopsis BRASSINOSTEROID INACTIVATOR2 is a typical BAHD acyltransferase involved in brassinosteroid homeostasis

Authors: Liping Xu; Zhiqiang Zhang;

Arabidopsis BRASSINOSTEROID INACTIVATOR2 is a typical BAHD acyltransferase involved in brassinosteroid homeostasis

Abstract

Brassinosteroids (BRs) are plant-specific steroidal hormones; BR homeostasis is crucial for various aspects of plant growth and development. However, to date, the BR inactivation process has not been thoroughly elucidated. In this study, we identified and characterized a novel BAHD family acyltransferase gene, BRASSINOSTEROID INACTIVATOR2 (BIA2), involved in BR inactivation. BIA2-overexpressing (OE-BIA2) plants displayed typical BR-deficient phenotypes, which were rescued by exogenous BR treatment. Real-time qRT-PCR and transcriptome analyses showed that expression levels of virtually all of the BR biosynthetic genes were increased, whereas the expression of many BR inactivation genes was reduced in OE-BIA2 plants. Root inhibition assays showed that the root growth of OE-BIA2 plants was inhibited. We obtained plants with an intermediate phenotype by crossing the OE-BIA2 plants with BRASSINOSTEROID-INSENSITIVE1 (BRI1)-overexpressing plants. The null BIA2 mutants had longer hypocotyls in the dark. BIA2 was predominantly expressed in roots, and its expression was induced by 24-epibrassinolide or dark treatment, but it exhibited a differential expression pattern compared with its homologue, BIA1. Furthermore, genetic transformation with point-mutant and deleted-BIA2 constructs confirmed that the HXXXD motif is essential for the function of BIA2. Taken together, these findings indicate that BIA2 is a typical BAHD acyltransferase that is involved in BR homeostasis and may inactivate bioactive BRs by esterification, particularly in roots and hypocotyls under dark conditions.

Related Organizations
Keywords

Arabidopsis Proteins, Gene Expression Regulation, Plant, Amino Acid Motifs, Brassinosteroids, Arabidopsis, Protein Kinases, Acyltransferases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Average
Top 10%
bronze