Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Molecular Sciences
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
License: CC BY
Data sources: PubMed Central
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Impact on the Clinical Evolution of Patients with COVID-19 Pneumonia and the Participation of the NFE2L2/KEAP1 Polymorphisms in Regulating SARS-CoV-2 Infection

Authors: María Elena Soto; Giovanny Fuentevilla-Álvarez; Adrián Palacios-Chavarría; Rafael Ricardo Valdez Vázquez; Héctor Herrera-Bello; Lidia Moreno-Castañeda; Yazmín Estela Torres-Paz; +7 Authors

Impact on the Clinical Evolution of Patients with COVID-19 Pneumonia and the Participation of the NFE2L2/KEAP1 Polymorphisms in Regulating SARS-CoV-2 Infection

Abstract

In patients with severe pneumonia due to COVID-19, the deregulation of oxidative stress is present. Nuclear erythroid factor 2 (NRF2) is regulated by KEAP1, and NRF2 regulates the expression of genes such as NFE2L2-KEAP1, which are involved in cellular defense against oxidative stress. In this study, we analyzed the participation of the polymorphisms of NFE2L2 and KEAP1 genes in the mechanisms of damage in lung disease patients with SARS-CoV-2 infection. Patients with COVID-19 and a control group were included. Organ dysfunction was evaluated using SOFA. SARS-CoV-2 infection was confirmed and classified as moderate or severe by ventilatory status and by the Berlin criteria for acute respiratory distress syndrome. SNPs in the gene locus for NFE2L2, rs2364723C>G, and KEAP1, rs9676881A>G, and rs34197572C>T were determined by qPCR. We analyzed 110 individuals with SARS-CoV-2 infection: 51 with severe evolution and 59 with moderate evolution. We also analyzed 111 controls. Significant differences were found for rs2364723 allele G in severe cases vs. controls (p = 0.02); for the rs9676881 allele G in moderate cases vs. controls (p = 0.04); for the rs34197572 allele T in severe cases vs. controls (p = 0.001); and in severe vs. moderate cases (p = 0.004). Our results showed that NFE2L2 rs2364723C>G allele G had a protective effect against severe COVID-19, while KEAP1 rs9676881A>G allele G and rs34197572C>T minor allele T were associated with more aggressive stages of COVID-19.

Keywords

Kelch-Like ECH-Associated Protein 1, SARS-CoV-2; COVID-19; pathogenesis; inflammation; <i>NFE2L2</i>; <i>KEAP1</i>; single nucleotide polymorphism, NF-E2-Related Factor 2, SARS-CoV-2, Humans, COVID-19, Genetic Predisposition to Disease, Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Green
gold