Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Vaccinesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Vaccines
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Vaccines
Article . 2022
Data sources: DOAJ
versions View all 5 versions
addClaim

Integration of Bulk and Single-Cell RNA-Seq Data to Construct a Prognostic Model of Membrane Tension-Related Genes for Colon Cancer

Authors: Jiacheng Li; Yugang Fu; Kehui Zhang; Yong Li;

Integration of Bulk and Single-Cell RNA-Seq Data to Construct a Prognostic Model of Membrane Tension-Related Genes for Colon Cancer

Abstract

Background: The plasma membrane provides a highly dynamic barrier for cancer cells to interact with their surrounding microenvironment. Membrane tension, a pivotal physical property of the plasma membrane, has attracted widespread attention since it plays a role in the progression of various cancers. This study aimed to identify a prognostic signature in colon cancer from membrane tension-related genes (MTRGs) and explore its implications for the disease. Methods: Bulk RNA-seq data were obtained from The Cancer Genome Atlas (TCGA) database, and then applied to the differentially expressed gene analysis. By implementing a univariate Cox regression and a LASSO-Cox regression, we developed a prognostic model based on four MTRGs. The prognostic efficacy of this model was evaluated in combination with a Kaplan–Meier analysis and receiver operating characteristic (ROC) curve analysis. Moreover, the relationships between the signature and immune cell infiltration, immune status, and somatic mutation were further explored. Lastly, by utilizing single-cell RNA-seq data, cell type annotation, pseudo-time analysis, drug sensitivity, and molecular docking were implemented. Results: We constructed a 4-MTRG signature. The risk score derived from the model was further validated as an independent variable for survival prediction. Two risk groups were divided based on the risk score calculated by the 4-MTRG signature. In addition, we observed a significant difference in immune cell infiltration, such as subsets of CD4 T cells and macrophages, between the high- and low-risk groups. Moreover, in the pseudo-time analysis, TIMP1 was found to be more highly expressed with the progression of time. Finally, three small molecule drugs, elesclomol, shikonin, and bryostatin-1, exhibited a binding potential to TIMP-1. Conclusions: The novel 4-MTRG signature is a promising biomarker in predicting clinical outcomes for colon cancer patients, and TIMP1, a member of the signature, may be a sensitive regulator of the progression of colon cancer.

Keywords

membrane tension; colorectal cancer; prognostic signature; immune microenvironment; molecular docking, immune microenvironment, R, Medicine, colorectal cancer, prognostic signature, molecular docking, Article, membrane tension

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Green
gold
Related to Research communities
Cancer Research