Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Pattern Recognition ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Pattern Recognition Letters
Article . 2021 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Pattern Recognition Letters
Article
License: CC BY NC ND
Data sources: UnpayWall
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

ROSNet: Robust one-stage network for CT lesion detection

Authors: Kuan-Yu Lung; Chi-Rung Chang; Shao-En Weng; Hao-Siang Lin; Hong-Han Shuai; Wen-Huang Cheng;

ROSNet: Robust one-stage network for CT lesion detection

Abstract

Abstract Automatic lesion detection from computed tomography (CT) scans is an important task in medical diagnosis. However, three frequent properties of medical data make CT lesion detection a challenging task: (1) Scale variance: Large scale variation is across lesion instances. Especially, it is extremely difficult to detect small lesions; (2) Imbalanced data: The data distributions are highly imbalanced, where few classes account for the majority of data; (3) Prediction stability: Based on our observations, an input lesion image with slightly pixel shift or translation can lead to drastic output mispredictions and this is not allowed for medical applications. To address these challenges, this paper proposes a Robust One-Stage Network (ROSNet) for robust CT lesion detection. Specifically, a novel nested structure of neural networks is developed to generate a series of feature pyramids for detecting CT lesions in various scales, an effective data sensitive class-balanced loss as well as a shift-invariant downsampling strategy are also introduced to improve the detection performance. Experiments are conducted on a large-scale and diverse dataset, DeepLesion, showing that ROSNet outperforms the best performance in MICCAI 2019 by 3.95% (2-class detection task) and 25.41% (8-class detection task) in terms of mean average precision (mAP).

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Top 10%
Top 10%
hybrid