Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Matrix Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Matrix Biology
Article . 1998 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
Matrix Biology
Article . 1998
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HKU Scholars Hub
Article . 2010
Data sources: HKU Scholars Hub
versions View all 3 versions
addClaim

Phenotypic and biochemical consequences of collagen X mutations in mice and humans

Authors: Jacenko, O; Chan, D;

Phenotypic and biochemical consequences of collagen X mutations in mice and humans

Abstract

Skeletal biology has entered an exciting period with the technological advances in murine transgenesis and human genetics. This review focuses on how these two approaches are being used to address the role of collagen X, the major extracellular matrix component of the focal zone of endochondral ossification, the hypertrophic cartilage zone. The hypothesized role of this unique collagen in skeletal morphogenesis and the phenotypic and biochemical consequences resulting from the disruption of its function are discussed. Specifically, data from three murine models, including transgenic mice with a dominant interference phenotype for collagen X, and two sets of mice with an inactivated collagen X gene through gene targeting and homologous recombination, as well as the human disorder of Schmid metaphyseal chondrodysplasia resulting from mutations in collagen X, are summarized and compared. Several inconsistencies and unresolved issues regarding the murine and human phenotypes and the function of collagen X are discussed.

Country
China (People's Republic of)
Related Organizations
Keywords

Bone and Bones - embryology - pathology, Cartilage - embryology - pathology, Osteochondrodysplasias - embryology, 572, Mice, Transgenic, Morphogenesis - physiology, Osteochondrodysplasias, Transgenic, Bone and Bones, Mice, Cartilage, Collagen - physiology, Mutation, Morphogenesis, Animals, Humans, Collagen

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    87
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
87
Top 10%
Top 10%
Top 10%
hybrid