
A novel algorithm, AlphaMissense, has been shown to have an improved ability to predict the pathogenicity of rare missense genetic variants. However, it is not known whether AlphaMissense improves the ability of gene-based testing to identify disease-influencing genes. Using whole-exome sequencing data from the UK Biobank, we compared gene-based association analysis strategies including sets of deleterious variants: predicted loss-of-function (pLoF) variants only, pLoF plus AlphaMissense pathogenic variants, pLoF with missense variants predicted to be deleterious by any of five commonly utilized annotation methods (Missense (1/5)) or only variants predicted to be deleterious by all five methods (Missense (5/5)). We measured performance to identify 519 previously identified positive control genes, which can lead to Mendelian diseases, or are the targets of successfully developed medicines. These strategies identified 0.85 million pLoF variants and 5 million deleterious missense variants, including 22,131 likely pathogenic missense variants identified exclusively by AlphaMissense. The gene-based association tests found 608 significant gene associations (at p < 1.25 × 10-7) across 24 common traits and diseases. Compared with pLoFs plus Missense (5/5), tests using pLoFs and AlphaMissense variants found slightly more significant gene-disease and gene-trait associations, albeit with a marginally lower proportion of positive control genes. Nevertheless, their overall performance was similar. Merging AlphaMissense with Missense (5/5), whether through their intersection or union, did not yield any further enhancement in performance. In summary, employing AlphaMissense to select deleterious variants for gene-based testing did not improve the ability to identify genes that are known to influence disease.
UK Biobank, Mutation, Missense, Computational Biology, QH426-470, Report, Exome Sequencing, Genetics, Humans, Genetic Predisposition to Disease, gene burden test, AlphaMissense, Algorithms, ExWAS, Genome-Wide Association Study
UK Biobank, Mutation, Missense, Computational Biology, QH426-470, Report, Exome Sequencing, Genetics, Humans, Genetic Predisposition to Disease, gene burden test, AlphaMissense, Algorithms, ExWAS, Genome-Wide Association Study
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
