
Let $D^-$ and $D^+$ be properly immersed closed locally convex subsets of a Riemannian manifold with pinched negative sectional curvature. Using mixing properties of the geodesic flow, we give an asymptotic formula as $t\to+\infty$ for the number of common perpendiculars of length at most $t$ from $D^-$ to $D^+$, counted with multiplicities, and we prove the equidistribution in the outer and inner unit normal bundles of $D^-$ and $D^+$ of the tangent vectors at the endpoints of the common perpendiculars. When the manifold is compact with exponential decay of correlations or arithmetic with finite volume, we give an error term for the asymptotic. As an application, we give an asymptotic formula for the number of connected components of the domain of discontinuity of Kleinian groups as their diameter goes to $0$.
38 pages. Major revision (20 pages shorter). Equidistribution of equidistant surfaces and the case with potential and Gibbs measures moved to book in preparation [BPP]
Differential Geometry (math.DG), FOS: Mathematics, Dynamical Systems (math.DS), 37D40, 37A25, 53C22, 30F40
Differential Geometry (math.DG), FOS: Mathematics, Dynamical Systems (math.DS), 37D40, 37A25, 53C22, 30F40
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
