Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ACM Transactions on ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Pressure-Aware Policy for Contention Minimization on Multicore Systems

Authors: Shivam Kundan; Theodoros Marinakis; Iraklis Anagnostopoulos; Dimitri Kagaris;

A Pressure-Aware Policy for Contention Minimization on Multicore Systems

Abstract

Modern Chip Multiprocessors (CMPs) are integrating an increasing amount of cores to address the continually growing demand for high-application performance. The cores of a CMP share several components of the memory hierarchy, such as Last-Level Cache (LLC) and main memory. This allows for considerable gains in multithreaded applications while also helping to maintain architectural simplicity. However, sharing resources can also result in performance bottleneck due to contention among concurrently executing applications. In this work, we formulate a fine-grained application characterization methodology that leverages Performance Monitoring Counters (PMCs) and Cache Monitoring Technology (CMT) in Intel processors. We utilize this characterization methodology to develop two contention-aware scheduling policies, one static and one dynamic , that co-schedule applications based on their resource-interference profiles. Our approach focuses on minimizing contention on both the main-memory bandwidth and the LLC by monitoring the pressure that each application inflicts on these resources. We achieve performance benefits for diverse workloads, outperforming Linux and three state-of-the-art contention-aware schedulers in terms of system throughput and fairness for both single and multithreaded workloads. Compared with Linux, our policy achieves up to 16% greater throughput for single-threaded and up to 40% greater throughput for multithreaded applications. Additionally, the policies increase fairness by up to 65% for single-threaded and up to 130% for multithreaded ones.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
gold
Published in a Diamond OA journal