Powered by OpenAIRE graph
Found an issue? Give us feedback
https://dx.doi.org/1...arrow_drop_down
https://dx.doi.org/10.48550/ar...
Article . 2008
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Basic Gravitational Currents and Killing-Yano Forms

Authors: A����k, ��.; Ertem, ��.; ��nder, M.; Ver��in, A.;

Basic Gravitational Currents and Killing-Yano Forms

Abstract

It has been shown that for each Killing-Yano (KY)-form accepted by an $n$-dimensional (pseudo)Riemannian manifold of arbitrary signature, two basic gravitational currents can be defined. Conservation of the currents are explicitly proved by showing co-exactness of the one and co-closedness of the other. Some general geometrical facts implied by these conservation laws are also elucidated. In particular, the conservation of the one-form currents implies that the scalar curvature of the manifold is a flow invariant for all of its Killing vector fields. It also directly follows that, while all KY-forms and their Hodge duals on a constant curvature manifold are the eigenforms of the Laplace-Beltrami operator, for an Einstein manifold this is certain only for KY 1-forms, $(n-1)$-forms and their Hodge duals.

11 pages

Keywords

High Energy Physics - Theory (hep-th), Differential Geometry (math.DG), FOS: Mathematics, FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!