Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multi-Scale Progressive Attention Network for Video Question Answering

Authors: The Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing 2021; Guo, Zhicheng;

Multi-Scale Progressive Attention Network for Video Question Answering

Abstract

Read paper: https://www.aclanthology.org/2021.acl-short.122 Abstract: Understanding the multi-scale visual information in a video is essential for Video Question Answering (VideoQA). Therefore, we propose a novel Multi-Scale Progressive Attention Network (MSPAN) to achieve relational reasoning between cross-scale video information. We construct clips of different lengths to represent different scales of the video. Then, the clip-level features are aggregated into node features by using max-pool, and a graph is generated for each scale of clips. For cross-scale feature interaction, we design a message passing strategy between adjacent scale graphs, i.e., top-down scale interaction and bottom-up scale interaction. Under the question's guidance of progressive attention, we realize the fusion of all-scale video features. Experimental evaluations on three benchmarks: TGIF-QA, MSVD-QA and MSRVTT-QA show our method has achieved state-of-the-art performance.

Related Organizations
Keywords

Computational Linguistics, Electromagnetism, Deep Learning, Neural Network, FOS: Physical sciences, Information and Knowledge Engineering, Condensed Matter Physics, Semantics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average