
doi: 10.21227/9673-hw63
As the burden of respiratory diseases continues to fall on society worldwide, this paper proposes a high-quality and robust dataset of human sounds for studying respiratory illnesses, including pneumonia and COVID-19. It consists of coughing, mouth breathing, and nose breathing sounds together with valuable metadata on related clinical characteristics. We also develop a proof-of-concept system for establishing baselines and benchmarking against multiple datasets, such as Coswara and COUGHVID. Our comprehensive experiments show that the Sound-Dr dataset has richer features, better performance, and is more robust to dataset shifts in various machine learning tasks. It is promising for a wide range of real-time applications on mobile devices. The proposed dataset and system will serve as practical tools to support healthcare professionals in diagnosing respiratory disorders. The dataset and code are publicly available here: https://github.com/hvt1609/Sound-Dr-dataset.git.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
