
Multidimensional surfaces of quantum chemical properties such as potential energies and dipole moments are common targets for machine learning, requiring the development of robust and diverse databases extensively exploring molecular configurational spaces. Here we composed the WS22 database covering several quantum mechanical (QM) properties (including potential energies, forces, dipole moments, polarizabilities, HOMO, and LUMO energies) for ten flexible organic molecules of increasing complexity and with up to 22 atoms. This database consists of 1.18~million equilibrium and non-equilibrium geometries carefully sampled from Wigner distributions centered at different equilibrium conformations (either at the ground or excited electronic states) and further augmented with interpolated structures. The diversity of our data sets is demonstrated by visualizing the geometries distribution with dimensionality reduction as well as via comparison of statistical features of the QM properties with those available in existing data sets. Our sampling targets broader quantum mechanical distribution of the configurational space than provided by commonly used sampling through classical molecular dynamics, upping the challenge for machine learning models.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
