Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Software . 2022
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Software . 2022
License: CC BY
Data sources: ZENODO
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Spatial/Temporal Locality-based Load-sharing in Speculative Discrete Event Simulation on Multi-core Machines

Authors: Montesano, Federica; Marotta, Romolo; Quaglia, Francesco;

Spatial/Temporal Locality-based Load-sharing in Speculative Discrete Event Simulation on Multi-core Machines

Abstract

Shared-memory multi-processor/multi-core machines have become a reference for many application contexts. In particular, the recent literature on speculative parallel discrete event simulation has reshuffled the architectural organization of simulation systems in order to deeply exploit the main features of this type of machines. A core aspect dealt with has been the full sharing of the workload at the level of individual simulation events, which enables keeping the rollback incidence minimal. However, making each worker thread continuously switch its execution between events destined to different simulation objects does not favor locality. This problem appears even more evident in the case of Non-Uniform-Memory-Access (NUMA) machines, where memory accesses generating a cache miss to be served by a far NUMA node give rise to both higher latency and higher traffic at the level of the NUMA interconnection. In this article, we propose a workload-sharing algorithm where the worker threads can have short-term binding with specific simulation objects to favor spatial locality. The new bindings---carried out when a thread decides to switch its execution to other simulation objects---are based on both (a) the timeline according to which the object states have passed through the caching hierarchy and (b) the (dynamic) placement of objects within the NUMA architecture. At the same time, our solution still enables the worker threads to focus their activities on the events to be processed whose timestamps are closer to the simulation commit horizon---hence we exploit temporal locality along virtual time and keep the rollback incidence minimal. In our design we exploit lock-free constructs to support scalable thread synchronization while accessing the shared event pool. Furthermore, we exploit a multi-view approach of the event pool content, which additionally favors local accesses to the parts of the event pool that are currently relevant for the thread activity. Our solution has been released as an integration within the USE (Ultimate-Share-Everything) open source speculative simulation platform available to the community. Furthermore, in this article we report the results of an experimental study that shows the effectiveness of our proposal.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 1
  • 1
    views
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
0
Average
Average
Average
1