Powered by OpenAIRE graph
Found an issue? Give us feedback
https://dx.doi.org/1...arrow_drop_down
https://dx.doi.org/10.48550/ar...
Article . 2013
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Infinite Secret Sharing -- Examples

Authors: Dibert, Alexander; Csirmaz, L��szl��;

Infinite Secret Sharing -- Examples

Abstract

The motivation for extending secret sharing schemes to cases when either the set of players is infinite or the domain from which the secret and/or the shares are drawn is infinite or both, is similar to the case when switching to abstract probability spaces from classical combinatorial probability. It might shed new light on old problems, could connect seemingly unrelated problems, and unify diverse phenomena. Definitions equivalent in the finitary case could be very much different when switching to infinity, signifying their difference. The standard requirement that qualified subsets should be able to determine the secret has different interpretations in spite of the fact that, by assumption, all participants have infinite computing power. The requirement that unqualified subsets should have no, or limited information on the secret suggests that we also need some probability distribution. In the infinite case events with zero probability are not necessarily impossible, and we should decide whether bad events with zero probability are allowed or not. In this paper, rather than giving precise definitions, we enlist an abundance of hopefully interesting infinite secret sharing schemes. These schemes touch quite diverse areas of mathematics such as projective geometry, stochastic processes and Hilbert spaces. Nevertheless our main tools are from probability theory. The examples discussed here serve as foundation and illustration to the more theory oriented companion paper.

Keywords

FOS: Computer and information sciences, 60A99, 60B05, 60G15, 62F10, 94A62, 46C99, 54D10, Information Theory (cs.IT), Probability (math.PR), FOS: Mathematics, Cryptography and Security (cs.CR)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!