Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Preprint . 2022
License: CC BY
Data sources: Datacite
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

DE LA CANTIDAD TRANSFINITA POSIBLE DE D��GITOS QUE FORMAN LA EXPANSI��N DECIMAL DE UN N��MERO TRASCENDENTAL

Authors: ALEJANDRO MATUS;

DE LA CANTIDAD TRANSFINITA POSIBLE DE D��GITOS QUE FORMAN LA EXPANSI��N DECIMAL DE UN N��MERO TRASCENDENTAL

Abstract

Se prueba que, si se asume como consistente el proceso diagonal de Cantor, es tambi��n l��gicamente consistente y necesario que entre los n��meros trascendentales existan diferentes cardinalidades transfinitas en la cantidad de los d��gitos que los componen en su desarrollo decimal. Alg��n trascendental puede estar formado por una cantidad ���0 de cifras, mientras que otro por ���1 o ���2 o ����� d��gitos. Entonces, procedemos a construir tales cardinalidades. Ello obliga a deducir tambi��n la existencia, dentro de la clase R de los n��meros reales, de infinitos subconjuntos R�� de tales n��meros, con ����� cardinalidades diferentes uno de otro, que procedemos a construir; y a partir de ello se encuentra la inadmisibilidad l��gica de identificar, como inadvertidamente en la teor��a actual, a R mismo con el que en realidad es un subconjunto R1 estrictamente propio de R. Obteniendo para R un teorema comparable con el Teorema de Cantor sobre los conjuntos potencia. Excepto que este nuevo teorema nos lleva a redimensionar las cardinalidades actualmente aceptadas de los conjuntos potencia P��. Estableciendo que ninguno de ellos alcanza la cantidad de elementos de R. Y para toda �� la cardinalidad de cada P�� es igual a la cardinalidad de cada R��; es decir, a �����. As��, los n��meros reales r ��� R tienen una riqueza infinitamente mayor de la que se ha conceptualizado hasta ahora en la Teor��a de Conjuntos y el An��lisis Matem��tico. Tambi��n es demostrado que, suponiendo que el m��todo diagonal de Cantor sea consistente, es necesario reformular la Hip��tesis del Continuo.

Keywords

CONJUNTOS POTENCIA, N��MEROS REALES, CANTOR, AN��LISIS, HIP��TESIS DEL CONTINUO, N��MEROS TRASCENDENTALES, CARDINALIDAD, INFINITO, DIAGONAL, IRRACIONALES

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 4
    download downloads 5
  • 4
    views
    5
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
4
5
Green