
Anomaly detection is very important in every sector as health, education, business, etc. Knowing what is going wrong with data/digital system help peoples from every sector to take decision. Detection anomalies in real time Big Data is nowadays very crucial. Dealing with real time data requires speed, for this reason the aim of this paper is to measure the performance of our previously proposed HW-GA algorithm compared with other anomaly detection algorithms. Many factors will be analyzed which may affect the performance of HW-GA as visualization of result, amount of data and performance of computers. Algorithm execution time and CPU usage are the parameters which will be measured to evaluate the performance of HW-GA algorithm. Also, another aim of this paper is to test the HW-GA algorithm with large amount of data to verify if it will find the possible anomalies and the result to compare with other algorithms. The experiments will be done in R with different datasets as real data Covid-19 and e-dnevnik data and three benchmarks from Numenta datasets. The real data have not known anomalies but in the benchmark data the anomalies are known this is in order to evaluate how the algorithms work in both situations. The novelty of this paper is that the performance will be tested in three different computers which one of them is high performance computer.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
