Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Pulse-doppler signal processing with quadrature compressive sampling

Pulse-doppler signal processing with quadrature compressive sampling

Abstract

© 2015 IEEE. Quadrature compressive sampling (QuadCS) is a recently introduced sub-Nyquist sampling scheme for effective acquisition of inphase and quadrature (I/Q) components of sparse radio frequency signals. In applications to pulse-Doppler radars, the QuadCS outputs can be arranged into a two-dimensional data format, in terms of slow time and virtual fast time, similar to that by Nyquist sampling. This paper develops a compressive sampling pulse-Doppler (CoSaPD) processing scheme which performs Doppler estimation/detection and range estimation from the sub-Nyquist data without recovering the Nyquist samples. The Doppler estimation is realized through a spectrum analyzer as in classical processing, whereas the detection is performed using the Doppler bin data. The range estimation is performed using sparse recovery algorithms only for the detected targets to reduce the computational load. A low detection threshold is used to improve the detection probability and the introduced false targets are then removed in the range estimation stage by exploiting the inherent target detection capability of the recovery algorithms. Simulation results verify the effectiveness of the proposed CoSaPD scheme, which requires only one-eighth of the Nyquist rate to achieve similar performance to the classical processing with Nyquist samples, provided that the input signal-to-noise ratio (SNR) is above -25 dB.

Keywords

cs.IT, math.IT

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!