Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chinese Physics Barrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chinese Physics B
Article . 2023 . Peer-reviewed
License: IOP Copyright Policies
Data sources: Crossref
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording

Authors: Zhi Li; Kun Zhang; Ao Du; Hongchao Zhang; Weibin Chen; Ning Xu; Runrun Hao; +3 Authors

High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording

Abstract

Thanks to the strong perpendicular magnetic anisotropy (PMA), excellent processing compatibility as well as novel spintronic phenomenon, Co/Pt multilayers have been attracting massive attention and widely used in magnetic storage. However, reversed magnetic domains come into being with the increasing layer repetition ‘N’ to reduce magneto-static energy, resulting in the remarkable diminishment of the remanent magnetization (M r). As a result, the product of M r and thickness (i.e., the remanent moment-thickness product, M r t), a key parameter in magnetic recording for reliable data storing and reading, also decreases dramatically. To overcome this issue, we deposit an ultra-thick granular [Co/Pt]80 multilayer with a total thickness of 68 nm on granular SiN x buffer layer. The M r t value, M r to saturation magnetization (M s) ratio as well as out of plane (OOP) coercivity (H coop) are high up to 2.97 memu/cm2, 67%, and 1940 Oe (1 Oe = 79.5775 A⋅m−1), respectively, which is remarkably improved compared with that of continuous [Co/Pt]80 multilayers. That is because large amounts of grain boundaries in the granular multilayers can efficiently impede the propagation and expansion of reversed magnetic domains, which is verified by experimental investigations and micromagnetic simulation results. The simulation results also indicate that the value of M r t, M r/M s ratio, and H coop can be further improved through optimizing the granule size, which can be experimentally realized by manipulating the process parameter of SiN x buffer layer. This work provides an alternative solution for achieving high M r t value in ultra-thick Co/Pt multilayers, which is of unneglectable potential in applications of high-density magnetic recording.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!