Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Similarity Measures and Their Applications in Multiple Attribute Decision- Making Under Cubic Hesitant Environment

Authors: Yohannes Belayneh; Rui Yong; Yingying Zhang;

Similarity Measures and Their Applications in Multiple Attribute Decision- Making Under Cubic Hesitant Environment

Abstract

Background: Cubic Hesitant Fuzzy Set (CHFS) is a hybrid set that can express uncertain and hesitancy fuzzy information simultaneously. Objective: In this paper, we introduced three trigonometric similarity measures (e.g., cosine, tangent, and cotangent similarity measures) to measure the degree of similarity between the alternative and the ideal set under the CHFS environment. Various desirable characteristics of the cubic hesitant fuzzy set are studied. Then, we developed multiple attribute decision-making methods based on the weighted cosine, tangent, and cotangent similarity measures of CHFSs. Methods: In this research, we presented the similarity measures of CHFSs based on the cosine, tangent, and cotangent functions. Then, illustrative examples of construction project management with CHFS information are presented to show the effectiveness and feasibility of the proposed Multiattribute Decision-making (MADM) method under CHFS environments. Result: Based on the weighted similarity measures between each alternative and the ideal set, this method provides the ranking order according to the values of their similarity measure. The best alternatives can be easily identified from the ranking order obtained. Conclusion: Based on the comparison of the decision results obtained, the tangent and cotangent similarity measures are better in similarity identification than the cosine similarity measure for solving MADM problems under a cubic hesitant environment.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!