Views provided by UsageCounts
SpatialGlue is a novel deep learning method for integrating spatial multi-omics data in a spatially informed manner. It utilizes a cycle graph neural network with a dual-attention mechanism to learn the significance of each modality at cross-omics and intra-omics integration. The method can accurately aggregate cell types or cell states at a higher resolution on different tissue types and technology platforms. Besides, it can provide interpretable insights into cross-modality spatial correlations. SpatialGlue is computationally efficient and it only requires about 5 mins for spatial multi-omics data at single-cell resolution (e.g., Spatial-ATAC-RNA-seq data, ~10,000 spots).
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 15 |

Views provided by UsageCounts