
doi: 10.48448/k73d-jn37
ICPR Browser Link: https://ailb-web.ing.unimore.it/icpr/paper/674/nn Abstract: Recently, many multi-stream gaze estimation methods have been proposed. They estimate gaze from eye and face appearances and achieve reasonable accuracy. However, most of the methods simply concatenate the features extracted from eye and face appearance. The feature fusion process has been ignored. Thus, we propose a novel Adaptive Feature Fusion Network (AFF-Net), which performs gaze tracking task in mobile tablets. We stack two-eye feature maps and utilize Squeeze-and-Excitation layers to adaptively fuse two-eye features according to their similarity on appearance. Meanwhile, we also propose Adaptive Group Normalization to recalibrate eye features with the guidance of facial feature. Extensive experiments on both GazeCapture and MPIIFaceGaze datasets demonstrate consistently superior performance of the proposed method.
Mobile Technology, Computer vision
Mobile Technology, Computer vision
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
