
This paper characterizes rate-one (i.e., full rate) full-spatial-diversity-achieving communication schemes based on the channel state information (CSI) availability and antenna configurations, i.e., CSI at a transmitter (CSIT) or CSI at a receiver (CSIR) and the numbers of transmit and receive antennas M and N (denoted by M × N), respectively. The maximum ratio combining (MRC), maximum ratio transmission (MRT), and space-time block code (STBC) schemes are rate-one full-spatial-diversity-achieving method facilitated for communication systems with: 1) 1 × N and CSIR; 2) M × 1 and CSIT; and 3) M × 1 and CSIR, respectively. A novel space-time line code (STLC) is then introduced for a 1 × 2 system with CSIT, and it is extended to an M × 2 STLC. The proposed STLC uses CSI for encoding at the transmitter and enables the receiver to decode the STLC symbols without CSI. Also, the STLC encoding matrices with various code rates and decoding (combining) schemes are designed for the M × 3 and M × 4 STLC systems: A code rate of 3/4, 1/2, and 3/7 for the M × 3 systems and a code rate of 3/4, 4/7, and 1/2 for the M × 4 systems. For each STLC scheme, a full-diversity achieving STLC decoding method is designed. Based on analyses and numerical results, we verify that the proposed STLC scheme achieves a full diversity order, i.e., MN, and is robust against CSI uncertainty. It is also shown that the array processing gain is inversely proportional to the code rate. To verify the merit of STLC, we introduce a joint operation with STBC and STLC schemes, called an STBLC system. The STBLC system achieves full-spatial-diversity gain in both uplink and downlink communications. The new STLC achieving full-spatial diversity is scalable for various code rates and expected to be applied to various wireless communication systems along with MRC, MRT, and STBC.
spatial diversity gain, space–time line code, Electrical engineering. Electronics. Nuclear engineering, Space–time code, space–time block code, multiple antennas, TK1-9971
spatial diversity gain, space–time line code, Electrical engineering. Electronics. Nuclear engineering, Space–time code, space–time block code, multiple antennas, TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
