Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bilkent University I...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

5G PDSCH: performance analysis of DMRS and PTRS designs for channel and phase noise estimation in MM-WAVE

Authors: Pekcan, Doğan Kutay;

5G PDSCH: performance analysis of DMRS and PTRS designs for channel and phase noise estimation in MM-WAVE

Abstract

Cataloged from PDF version of article. Thesis (Master's): Bilkent University, Department of Electrical and Electronics Engineering, İhsan Doğramacı Bilkent University, 2021. Includes bibliographical references (leaves 47-51). The mm-Wave is one of the main enablers for the performance requirements of 5G. Although it provides communication systems with huge bandwidth and data rates, it also has some disadvantages as the carrier frequencies can significantly exceed 6 GHz and go up to 300 GHz. For example, there are significant challenges such as propagation loss and severe phase noise (PN). The PN can be observed in two parts: common phase error (CPE) and inter-carrier interference (ICI). In the literature, there are algorithms for the estimation and compensation of PN for OFDM-based systems. We apply both CPE and ICI compensation algorithms for 5G PDSCH at the carrier frequency of 70 GHz. Detailed performance analysis is performed for demodulation reference signal (DMRS) based channel estimation and phase-tracking reference signal (PTRS) based PN estimation. We observe the effects of different reference signal parameters in 5G for each PN compensation algorithm. For this purpose, we use up-to-date power spectral density (PSD) models for PN modeling and show uncoded bit error rate (BER) graphs obtained via extensive simulations for MATLAB's tapped delay line (TDL) channels. We also analyze the system performance under very high Doppler, where PTRS based channel estimation is compared with DMRS based channel estimation. by Doğan Kutay Pekcan M.S.

Country
Turkey
Related Organizations
Keywords

mm-Wave, DMRS, Phase noise, Channel estimation, PTRS, 003, 5G

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green