<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The Phrase-Based Statistical Machine Translation (PB-SMT) model has recently begun to include source context modeling, under the assumption that the proper lexical choice of an ambiguous word can be determined from the context in which it appears. Various types of lexical and syntactic features such as words, parts-of-speech, and supertags have been explored as effective source context in SMT. In this paper, we show that position-independent syntactic dependency relations of the head of a source phrase can be modeled as useful source context to improve target phrase selection and thereby improve overall performance of PB-SMT. On a Dutch—English translation task, by combining dependency relations and syntactic contextual features (part-of-speech), we achieved a 1.0 BLEU (Papineni et al., 2002) point improvement (3.1% relative) over the baseline.
Machine translating
Machine translating
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |