Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DROPS - Dagstuhl Res...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DBLP
Conference object
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Class of Heuristics for Reducing the Number of BWT-Runs in the String Ordering Problem.

Authors: Bertola G.; Cox A. J.; Guerrini V.; Rosone G.;

A Class of Heuristics for Reducing the Number of BWT-Runs in the String Ordering Problem.

Abstract

The Burrows-Wheeler transform (BWT) is a famous text transformation that rearranges the symbols of the input strings so that occurrences of a same symbol tend to occur in runs. The number of runs is an important parameter in the BWT output string, historically associated with its high compressibility and more recently used as a measure for the space complexity of efficient data structures. It is a known fact that reordering the strings in the input collection 𝒮 affects the number of runs in the output string bwt(𝒮) produced by applying the BWT to the string collection. In this paper, we define a class of transformed strings where symbols in particular blocks of the bwt(𝒮) can be reordered according to a different adaptive alphabet order. Then, we introduce new heuristics to reduce the number of runs in the BWT output of a string collection that improve on the two existing heuristics introduced in Cox et al. [Anthony J. Cox et al., 2012]. These new heuristics are computed when applying the BWT to a string collection assuming no a priori order on the input strings and without requiring any pre- and/or post- processing of the collection 𝒮 or of the BWT string. In this paper, we also face the problem of reconstructing the input collection 𝒮 from the string bwt(𝒮) together with the string permutation realized when applying an alphabetical reordering of symbols during the construction of bwt(𝒮).

Countries
Germany, Italy
Keywords

string compression, Burrows-Wheeler Transform, repetitive text, Burrows-Wheeler Transform; repetitive text; SAP-interval; string compression, SAP-interval, 004, ddc: ddc:004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green