Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exploring feature set combinations for WSD

Authors: Agirre Bengoa, Eneko; López de Lacalle Lekuona, Oier; Martínez Iraola, David;

Exploring feature set combinations for WSD

Abstract

Este trabajo explora la división de atributos en grupos para poder mejorar la desambiguación de acepciones (WSD) mediante la combinación de sistemas entrenados en cada uno de estos grupos de atributos. Los resultados conseguidos demuestran que sólo k-NN es capaz de obtener beneficio de la combinación de la división de atributos, y que el voto único no es suficiente para la mejora. Por ello proponemos combinar todo los subsistemas k-NN donde cada vecino da su voto según su rango de vecindad. Para la evaluación hemos utilizado dos conjuntos de datos (Senseval-3 Lexical-Sample y All-words ), fijando las mejores opciones de combinación en un tercer conjunto de datos (Senseval-2 Lexical-Sample). Los resultados para la tarea All-words de Senseval-3 son los mejores que se han publicado hasta el día de hoy. Los resultados del Lexical-Sample se situan entre los mejores en el estado-del-arte.

This paper explores the split of features sets in order to obtain better wsd systems through combinations of classifiers learned over each of the split feature sets. Our results show that only k-NN is able to profit from the combination of split features, and that simple voting is not enough for that. Instead we propose combining all k-NN subsystems where each of the k neighbors casts one vote. We have performed a thorough evaluation on two datasets (Senseval-3 Lexical-Sample and All-words), having set the best combination options in a development dataset (Senseval-2 Lexical-Sample). The results for the All-Words task are the best published up to date. The results for the lexical sample are state-of-the-art.

Related Organizations
Keywords

Espacio de atributos, Word sense disanbiguation, Combination, K Nearest Neighbor, Desambiguación de acepciones de palabra, Feature space

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green